Nonlinear analysis of a two- and three-degree-of-freedom aeroelastic system with rotational stiffness free-play

نویسندگان

  • David C. Asjes
  • Jerald Vogel
  • Greg R. Luecke
  • Baskar Ganapathysubramanian
چکیده

Under the right parameters, flutter occurs in an airfoil when aerodynamic forces drive a dynamic structure to an oscillatory, possibly divergent condition. The presence of a rotational stiffness nonlinearity at the root of an all-moving airfoil has been shown to decrease the freestream velocity at which flutter occurs. Since this is a somewhat common configuration for flight structures and other aerodynamic machinery, a large amount of research has been devoted to understanding it over the several decades. Attempts to characterize it, however, have mostly resulted in methods that provide numerical simulation, validated by experimental results, rather than a nonlinear systems analysis approach. This research addresses the problem of characterizing the phenomenon of flutter in an all moving airfoil that has a rotational stiffness free-play nonlinearity. Application is made to both a rigid two-dimensional model and a flexible three-dimensional model. A system theory approach is used to model a typical airfoil system with rotational free-play nonlinearity so that analysis can be performed with necessarily conducting numerical time domain simulations of the model. The main contributions of this research are the introduction and validation of a nonlinear freeplay model that allows better exploitation of nonlinear systems analysis techniques, the design and validation of the subsequent two-dimensional model, the application of new system identification tools to provide an aerodynamic reduced order model that is reasonably accurate for three-dimensional modeling and computationally efficient, and the introduction of two new approaches to the three-dimensional modeling problem. This research introduces the use of a hyperbola function to model the free-play nonlinearity, allowing a system that is both continuous, responsive to changes in the free-play region width, and physically representative. For the two-dimensional case, the nonlinearity is modeled as a feedback interconnection of linear system and static nonlinearity. The feedback interconnection structure is exploited to analyze the system dynamics, consisting of unique stable fixed points, multiple steady states and limit cycle oscillations. A

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Helicopter Blade Stability Analysis Using Aeroelastic Frequency Response Functions

In the present paper, the aeroelastic stability of helicopter rotor blade is determined using Aeroelastic Frequency Response Function. The conventional methods of aeroelastic stability usually use an iterative procedure while the present method does not require such approach. Aeroelastic Frequency Response Functions are obtained by inverting dynamic stiffness matrix of the aeroelastic system. S...

متن کامل

Free Vibration Analysis of a Six-degree-of-freedom Mass-spring System Suitable for Dynamic Vibration Absorbing of Space Frames

This study is concentrated on the natural frequencies and mode shapes of a simple three-member space frame coupled with a dynamic vibration absorber. The dynamic vibration absorber is modeled as a six-degree-of-freedom mass-spring system. For the first time, the free vibration of an elastic structure with a six-degree-of-freedom mass-spring system is found. Each member of the space frame has un...

متن کامل

Experimental and numerical investigation of unsteady flow around cylinder with four plates perpendicular to it with the rotational degree of freedom

In this study, the behavior of a subject consisting of a cylinder with 4 plates perpendicular to it with a rotational degree of freedom under airflow both through the numerical approach, known as improved discrete vortex and experimental approach were investigated. The experimental and numerical results have shown that oscillating regime occurs in low velocity and length. This movement is vibra...

متن کامل

A mixed H2/H∞ scheduling control scheme for a two degree-of-freedom aeroelastic system under varying airspeed and gust conditions

This article investigates the control of a two degree-of-freedom aeroelastic system with a torsional stiffness nonlinearity. The dynamics are transformed into a Linear Fractional Representation (LFR) such that the nonlinear effects of airspeed on the dynamics act as a gain feedback to the nominal system. A controller in LFR, which allows it to schedule with airspeed, is then synthesised using L...

متن کامل

A New Finite Element Formulation for Buckling and Free Vibration Analysis of Timoshenko Beams on Variable Elastic Foundation

In this study, the buckling and free vibration of Timoshenko beams resting on variable elastic foundation analyzed by means of a new finite element formulation. The Winkler model has been applied for elastic foundation. A two-node element with four degrees of freedom is suggested for finite element formulation. Displacement and rotational fields are approximated by cubic and quadratic polynomia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015